

Interference Testing And Consultancy Services (Pty) Ltd

ITC SERVICES (PTY) LTD Reg 88/002032/07 Plot 44 Kameeldrift East, Pretoria Private Bag X13 Lynn East 0039 Republic of South Africa Tel (012) 808 1730 Int + 27 12 808 1730 Fax (012) 808 1733

\\192.168.0.1\public\reports\BS EN 50090-2-2\5407 - Nsoft Development - QS-KNX.doc

BS EN 50090-2-2 TESTS ON THE THE FPC-C40 PROTOCARRIER FPC-N40 PROTONODE UNIT

REFERENCE NUMBER R 5407/13

REVISION : 1.0

DATE : 18/02/2013

COPY : Master

CONFIGURATION CONTROL

ORIGINAL ONLY IF THIS NOTE IS IN RED INK

PARTIES INVOLVED						
AUTHORITY	NAME	SIGNATURE	DATE			
NSOFT DEVELOPMENT Client:	F Giangregorio					
ITC SERVICES Approved By:	JJ Joubert	M.	18/02/2013			
ITC SERVICES Tested by:	CJ Deysel	Deynes	18/02/2013			

DISTRIBUTION LIST					
COPY NO	NO NAME ORGANISATION				
MASTER	CONFIGURATION LIBRARY	NSOFT DEVELOPMENT			
1	CONFIGURATION LIBRARY	ITC SERVICES			

HISTORY SHEET						
REV	REV DATE AUTHOR PAGES AFFECTED CHANGE PROPOSAL					
1.0	18/02/2013	CJ Deysel	All	N/A		

MAGNETIC ARCHIVE INFORMATION			
DIRECTORY	FILE NAME		
\\192.168.0.1\public\reports\BS EN 50090-2-2\5407 - Nsoft Development - QS-KNX.doc	5407 - Nsoft Development - QS-KNX.doc		

	LIST OF EFFECTIVE PAGES				CONFIGURATION CONTROL			
PAGE	REV	PAGE	REV	PAGE	REV	PAGE	REV	
1	1.0	9	1.0	17	1.0			
2	1.0	10	1.0	18	1.0			
3	1.0	11	1.0	19	1.0			
4	1.0	12	1.0	20	1.0			
5	1.0	13	1.0	21	1.0			
6	1.0	14	1.0	22	1.0			
7	1.0	15	1.0					
8	1.0	16	1.0					

CLIENT INFORMATION					
DESCRIPTION	DESCRIPTION INFORMATION				
Name	Nsoft Develpment				
Address:	PO Box 7090				
	Westgate				
	1734				
	Franco Giangregorio				

ACRONYMS AND ABBREVIATIONS

AVE Average C Circular

CSIR Council for Scientific and Industrial Research

E-Fields Electric Fields

EFT Electrical Fast Transients
EMC Electromagnetic Compatibility
EMI Electromagnetic Interference
ESD Electrostatic Discharge
EUT Equipment Under Test

H Horizontal

HCP Horizontal Coupling Plane

NIST National Institute of Science and Technology

OATS Open Area Test Site
PC Personal Computer
QP Quasi-Peak
RF Radio Frequency

SANAS South African National Accreditation System

V Vertical

VCP Vertical Coupling Plane

TABLE OF CONTENTS

1. II	NTRODUCTION	7
2. T	TEST RESULT SUMMARY	7
2.1	EMISSION CLASSES AND IMMUNITY CRITERIA	9
2.1 2.1.		
2.1.		
3. T	TEST METHODOLOGY	8
3.1	ENVIRONMENTAL CONDITIONS DURING TEST:	8
4. C	CALIBRATION OF EQUIPMENT	8
5. N	MEASUREMENT OF UNCERTAINTY	9
	Octobrono Francisco	•
5.1 5.2	CONDUCTED EMISSIONSRADIATED EMISSIONS	
6. T	TEST SAMPLE DESCRIPTION AND TEST SETUP DETAILS	9
7. II	MAGES	10
8. E	EMISSIONS	11
8.1	SET-UP	
o. i 8.1.		
8.1.		
8.1.		
8.1.		
8.1.		
9. II	MMUNITY	16
9.1	ELECTRICAL FAST TRANSIENTS	16
•	AC Power Ports	16
•	I/O Ports	16
9.1.	1.1 Results	16
9.1.	1.2 Conclusion	16
9.2	ELECTROSTATIC DISCHARGE	
9.2.		
9.2.		
9.3	Surges	
9.3.		
•	AC Power Port	
9.3.		
9.3.		_
9.4	RADIATED SUSCEPTIBILITY	
9.4.		
9.4.	4.2 Results	
~ 4		
9.4.		
9.5	CONDUCTED IMMUNITY	20
9.5 <i>9.5.</i>	CONDUCTED IMMUNITY	20
9.5 9.5. 9.5.	CONDUCTED IMMUNITY	20 20
9.5 9.5. 9.5. 9.5.	CONDUCTED IMMUNITY	20 20 20
9.5 9.5. 9.5. 9.5. 9.6	CONDUCTED IMMUNITY	20 20 20 20
9.5 9.5 9.5 9.5 9.6 9.6	CONDUCTED IMMUNITY	20 20 20 21
9.5 9.5. 9.5. 9.5 9.6 9.6	CONDUCTED IMMUNITY	20 20 20 21 21
9.5 9.5 9.5 9.6 9.6 9.6 9.6	CONDUCTED IMMUNITY 5.1 Set-up 5.2 Results 5.3 Conclusion VOLTAGE DIPS AND INTERRUPTIONS 6.1 Set-up 6.2 Results 6.3 Conclusion	20 20 21 21 21
9.5 9.5 9.5 9.6 9.6 9.6 9.6	CONDUCTED IMMUNITY 5.1 Set-up 5.2 Results 5.3 Conclusion VOLTAGE DIPS AND INTERRUPTIONS 5.4 Set-up 5.5 Results 6.5 Conclusion VOLTAGE FLUCTUATIONS & FLICKERS	
9.5 9.5 9.5 9.6 9.6 9.6 9.6	CONDUCTED IMMUNITY	

QS-KNX	TEST REPORT	
		Page 5 of 22

10.	COMPLIANCE STATEMENT	.2
11	CONCLUSION	2

LIST OF TABLES

Table 8.1-1: Test equipment used for Conducted and Radiated Emission Measurements	1 ′
Table 9.1-1 Test equipment used for Electrical Fast Transients	16
Table 9.2-1 Test equipment used for ESD	17
Table 9.2-2 Results of ESD (Contact discharge)	17
Table 9.2-3 Results of ESD (Air discharge)	17
Table 9.3-1 Test equipment used for Surges	18
Table 9.4-1 Test equipment used for Radiated Susceptibility.	19
Table 9.5-1 Test equipment used for Conducted Immunity	20
Table 9 6-1 Test equipment used for Voltage Dips and Interruptions	21

1. INTRODUCTION

The FPC-C40 ProtoCarrier / FPC-N40 ProtoNode unit, manufactured by Sierra Monitor Corporation, model number FPC-C40-xxx-yyy-zzzz / FPC-N40-xxx-yyy-zzzz, serial number 1220801914 / QuickServer model: FS-QS-1240-NNMM / ProSoft QuickServer model: PS-QS-1240-NNMM also with assembly A23114 ("Protocarrier"), serial number 488-002 and assembly A23107 ("FFP-RS485-D32"), serial number 4E61AF, henceforth referred to as Equipment Under Test (EUT), was tested for compliance on 18/02/2013 at the premises of ITC Services (Pty) Ltd to the following specifications:

- BS EN 50090-2-2: (1996) +A2: 2007: Home and building electronic systems (HBES) System overview General technical requirements.
- SANS 222 (2009) / CISPR 22 (2008): 'Information technology equipment Radio disturbance characteristics - Limits and methods of measurement'
 - SANS 61000-4-2 (2009) / IEC 61000-4-2 (2008): Testing and measurement techniques Electrostatic discharge immunity test
 - SANS 61000-4-3 (2008) / IEC 61000-4-3 (2010): Testing and measurement techniques Radiated, radio-frequency, electromagnetic field immunity test
 - SANS 61000-4-4 (2011) / IEC 61000-4-4 (2011): Testing and measurement techniques Electrical Fast Transient / Burst
 - SANS 61000-4-5 (2006) / IEC 61000-4-5 (2005): Testing and measurement techniques Surge immunity test
 - SANS 61000-4-6 (2009) / IEC 61000-4-6 (2008): Testing and measurement techniques Immunity to conducted disturbances, induced by radio-frequency fields
 - SANS 61000-4-11 (2005) / IEC 61000-4-11(2004): Testing and measurement techniques Voltage Dips, Short Interruptions and voltage variations immunity test.
 - SANS 61000-3-3 (2009) / IEC 61000-3-3 (2008) : Limits Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems – Equipment with rated current ≤16 A per phase

2. TEST RESULT SUMMARY

CISPR 22 Radiated Emissions: 30-1000MHz	Pass Class B
CISPR 22 Radiated Emissions: 1000-2500MHz	Pass Class B
CISPR 22 Conducted Emissions	Pass Class B
IEC 61000-4-2 Electrostatic discharge immunity test	Pass Criterion A
IEC 61000-4-3: Radiated, radio-frequency, electromagnetic field immunity test	Pass Criterion A
IEC 61000-4-4: Electrical Fast Transient / Burst	Pass Criterion A
IEC 61000-4-5: Surge immunity test	Pass Criterion A
IEC 61000-4-6: Immunity to conducted disturbances, induced by radio-frequency fields	Pass Criterion A
IEC 61000-4-11: Voltage dips	Pass Criterion A
IEC 61000-3-3: voltage changes, voltage fluctuations and flicker	Pass

2.1 EMISSION CLASSES AND IMMUNITY CRITERIA

2.1.1 Emissions

CISPR 22 Classifies ITE as either Class A or Class B.

Class B ITE is a category of apparatus which satisfies the class B ITE disturbance limits.

Class B ITE is intended primarily for use in the domestic environment and may include:

- Equipment with no fixed place of use; for example, portable equipment powered by built-in batteries;
- Telecommunication terminal equipment powered by a telecommunication network;
- Personal computers and auxiliary connected equipment.

NOTE The domestic environment is an environment where the use of broadcast radio and television receivers may be expected within a distance of 10 m of the apparatus concerned.

Class A ITE is a category of all other ITE which satisfies the class A ITE limits but not the class B ITE limits. Such equipment should not be restricted in its sale but the following warning shall be included in the instructions for use:

Warning

This is a class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

2.1.2 Immunity

The Criteria set-out above are defined as follows:

Criteria A: normal performance within limits specified by the manufacturer, requestor or purchaser;

Criteria B: temporary loss of function or degradation of performance which ceases after the disturbance ceases, and from which the equipment under test recovers its normal performance, without operator intervention;

Criteria C: temporary loss of function or degradation of performance, the correction of which requires operator intervention;

3. TEST METHODOLOGY

3.1 ENVIRONMENTAL CONDITIONS DURING TEST:

Temperature: 23 °CRelative Humidity: 42 %

4. CALIBRATION OF EQUIPMENT

The computer controlled EMI Measuring system is checked for amplitude and frequency accuracy with a signal generator (calibrated by a SANAS accredited laboratory and is traceable to the national standards maintained by the CSIR) on a monthly basis. The calibration of the equipment is performed by Inala Technology. All equipment Calibration Certificates are available on request.

5. MEASUREMENT OF UNCERTAINTY

The uncertainty budget is calculated according to the guidelines of LAB34 and CISPR16-4

5.1 CONDUCTED EMISSIONS

- Compliance is deemed to occur if all measured disturbances are 0.83dB below the CISPR 22 limit.
- Non-compliance is deemed to occur if any measured disturbance is less than 0.83dB below the CISPR 22 limit.

5.2 RADIATED EMISSIONS

- Compliance is deemed to occur if all measured disturbances are below the CISPR 22 limit.
- Non-compliance is deemed to occur if any measured disturbance exceeds the CISPR 22 limit.

6. TEST SAMPLE DESCRIPTION AND TEST SETUP DETAILS

The specific test methodology will be discussed under each relevant test if different to the general set-up guidelines below.

The **EUT** was subjected to all tests in the following way:

- The EUT was switched on and operated in accordance with the manufacturer instructions.
- Tests were performed while the unit was fully operational.
- Continues operation was monitored on a laptop computer via a LAN cable.
- The unit was supplied with a 15 V_{dc} Condor power supply, part number: SA-152A0IV, Model number: HK-H5-A15.
- Deviations from the above set-up will be noted in each specific case.

7. IMAGES

FPC-C40 ProtoCarrier / FPC-N40 ProtoNode: Top view

IEC 61000-4-2: Electro Static Discharge test set-up

QS-KNX TEST REPORT
Page 11 of 22

8. EMISSIONS

8.1 SET-UP

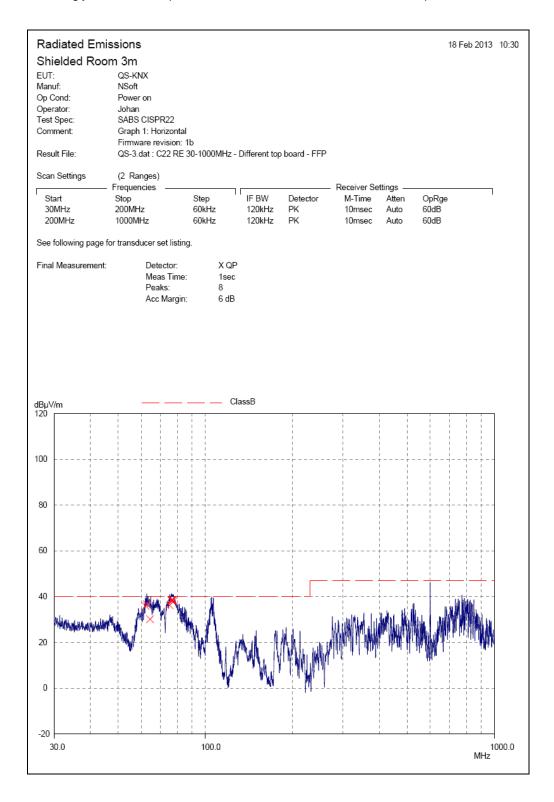
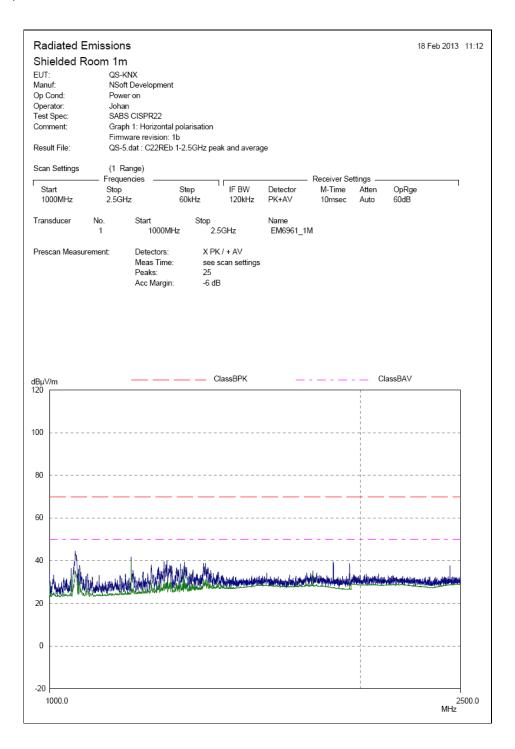

- The EUT was switched on and operated in accordance with the manufacturer instructions.
- Automated scans in the frequency band 30MHz to 2500MHz (radiated emissions) were done in order to determine compliance emission results for the EUT.

Table 8.1-1: Test equipment used for Conducted and Radiated Emission Measurements

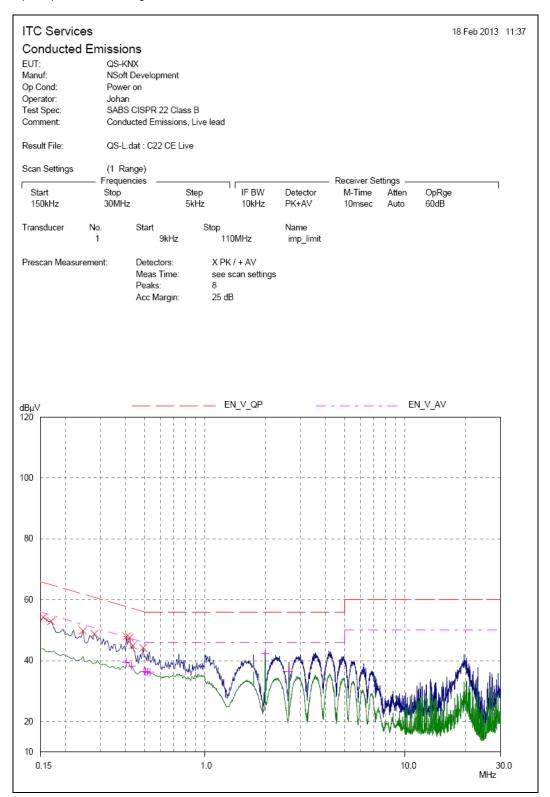
EQUIPMENT	SERIAL NO
IBM Compatible PC	Ser No : None
Rohde & Schwarz ESPC	Ser No: 845296/004
BIA 30 Biconical antenna	Ser No : 3568
EM 6950 Log-P Antenna	Ser No: ITC001
EM 6961 Ridge horn antenna	Ser No: 6248
AFJ LS-16 LISN	Ser No: 90038


8.1.1 Radiated Emission Results: 30 - 1000MHz

Graph 1: Represents quasi peak radiated emissions (represented by the red crosses) measured from the EUT. Emission levels were below the Class B limit. Note that the test distance was 3m. The limit line was adjusted accordingly. The test was performed with the antennas in the Horizontal polarization.

8.1.2 Radiated Emission Results: 1000 - 2500MHz

Graph 2: Peak radiated and average emissions measured from the EUT were below the Class B quasi peak and average limits. Note that the test distance was 1m. The test was performed with the antennas in the Horizontal polarization.



8.1.3 Conclusion

The EUT complies with the radiated emissions requirements of SANS 222 / CISPR 22 Class B.

8.1.4 Conducted Emission Results

Graph CE1: Peak and Average Conducted emissions measured on the live lead of the EUT was below the Class B quasi peak and Average limit.

Graph CE2: Peak and Average Conducted emissions measured on the Neutral lead of the EUT was below the Class B quasi peak and Average limit.

8.1.5 Conclusion

The EUT complies with the conducted emissions requirements of SANS 222 / CISPR 22 Class B.

9. IMMUNITY

9.1 ELECTRICAL FAST TRANSIENTS

- The EUT was supplied with the required voltage and subjected to a direct injected 5kHz repetition rate 5/50nS wave interference signal.
- The EUT was tested as table top equipment.
- The interference signal was applied in the following sequence:

AC Power Ports

- a. Live to Neutral: Tests were executed with +1kV and -1kV interference signal amplitudes for a 60 second period for each polarity.
- b. Live and Neutral to Ground Reference: Tests were executed with +1kV and -1kV interference signal amplitudes for a 60 second period for each polarity.

I/O Ports

- a) Capacitive coupled + 0.5 kV and 0.5 kV interference signal applied to the KNX bus loom.
- b) Capacitive coupled + 0.5 kV and 0.5 kV interference signal applied to the LAN loom.
- c) Capacitive coupled + 0.5 kV and 0.5 kV interference signal applied to the RS-485 (field port) loom.

Table 9.1-1 Test equipment used for Electrical Fast Transients

EQUIPMENT	SERIAL NO/ REFERENCE NUMBER	
TESEQ NSG 3040	Ser No: 1856	

9.1.1 Results

AC power port:

- The EUT was resilient to the interference signal.
- The EUT functioned normally during and after the test.

I/O ports:

- The EUT was resilient to the capacitive coupled + 0.5 kV and -0.5 kV interference signal applied to the KNX bus, LAN and RS-485 looms individually.
- The EUT functioned normally during and after the test.

9.1.2 Conclusion

The EUT comply with criterion A of SANS / IEC 61000-4-4.

9.2 ELECTROSTATIC DISCHARGE

9.2.1 Set-up

- The EUT was switched on and operated in accordance with the manufacturer instructions.
- The EUT was tested as tabletop equipment.
- 10 positive and 10 negative contact discharges were applied to the VCP and HCP respectively.
- 10 discharge attempts were made to the enclosure of the device.

Table 9.2-1 Test equipment used for ESD

EQUIPMENT	SERIAL NO/ REFERENCE NUMBER
TESEQ NSG 3040	Ser No: 1856
TESEQ NSG 435 ESD gun	Ser No: 6555
Air discharge tip	None
Contact discharge tip	None
Vertical Coupling Plane	None

Table 9.2-2 Results of ESD (Contact discharge)

POSITION ON EUT	VOLTAGE	NUMBER OF DISCHARGES	RESULT	VERDICT
VCP (Vertical)	± 4kV	10	Not susceptible	Comply (A)
HCP (Horizontal)	± 4kV	10	Not susceptible	Comply (A)
LAN connector	± 4kV	10	Susceptible	Comply (B)

Table 9.2-3 Results of ESD (Air discharge)

POSITION ON EUT	VOLTAGE	NUMBER OF DISCHARGES	RESULT	VERDICT
Enclosure	± 8kV	10	Susceptible	Comply (B)

- The EUT was resilient to the ESD pulses.
- The EUT functioned normally during and after the test.

9.2.2 Conclusion

The EUT complies with criterion A of SANS / IEC 61000-4-2.

9.3 SURGES

9.3.1 Set-up

- The EUT was supplied with the required voltage.
- Five positive and five negative 1.2/50µs pulses were directly injected into the supply at 60 second intervals between surges at 0°, 90°, 180° and 2 70° angles. The pulses were applied in the following sequence:

AC Power Port

a. Live to Neutral $\pm 1kV$.

Table 9.3-1 Test equipment used for Surges

EQUIPMENT	SERIAL NO/ REFERENCE NUMBER	
TESEQ NSG 3040	Ser No: 1856	

9.3.2 Results

The EUT was resilient to the surges applied.

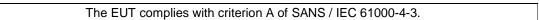
9.3.3 Conclusion

The EUT complies with criterion A of the relevant section of SANS / IEC 61000-4-5.

9.4 RADIATED SUSCEPTIBILITY

9.4.1 Set-up

- The EUT was switched on and operated in accordance with the manufacturer instructions.
- The test was performed in a shielded enclosure in the frequency band 80 MHz to 1000 MHz with 80 % AM 1kHz, at a level of 3 V/m according to SANS / IEC 61000-4-3 Clause 8 (Frequency step and dwell method) with the following deviations:


Table 9.4-1 Test equipment used for Radiated Susceptibility.

EQUIPMENT	SERIAL NO/ REFERENCE NUMBER
Olivetti Personal Computer Model PCS 286	Ser No : 00074333
RF Signal Generator HP Model 8657A	Ser No: 2819UO4767
Log Periodic Antenna Model EM6950	Ser No : 1001
RF Amplifier EM Model 4248-1	Ser No : None
Field Strength Meter AR Model FM2000	Ser No: 14021

9.4.2 Results

The EUT was resilient to the 80% AM 1 kHz signal applied at a level of 3 V/m.

9.4.3 Conclusion

9.5 CONDUCTED IMMUNITY

9.5.1 Set-up

- The EUT was switched on and operated in accordance with the manufacturer instructions.
- The test was performed in a shielded enclosure in the frequency band 150kHz to 80 MHz with 80 % AM 1kHz, at a level of 3 V (unmodulated) on the power leads, KNX bus, LAN and RS-485 looms according to SANS / IEC 61000-4-6.

Table 9.5-1 Test equipment used for Conducted Immunity.

EQUIPMENT	SERIAL NO/ REFERENCE NUMBER
RF Signal Generator HP Model 8657A	Ser No: 2819UO4767
BCI Probe FCC Model F-120-3	Ser No : 52
RF Amplifier EM Model 4248-1	Ser No : None
Lüthi Coupling decoupling network	Ser No : 2555

9.5.2 Results

- The EUT was resilient to the 80% AM 1 kHz signal applied at a level of 3V on the supply leads.
- The EUT was resilient to the 80% AM 1 kHz signal applied at a level of 3V on the KNX bus loom.
- The EUT was resilient to the 80% AM 1 kHz signal applied at a level of 3V on the LAN loom.
- The EUT was resilient to the 80% AM 1 kHz signal applied at a level of 3V on the RS-485 (field port) loom.

9.5.3 Conclusion

The EUT complies with criterion A of the relevant section of SANS / IEC 61000-4-6.

9.6 VOLTAGE DIPS AND INTERRUPTIONS

9.6.1 Set-up

- The EUT was switched on and operated in accordance with the manufacturer instructions.
- The EUT was subjected to the following voltage dips and interruptions applied to the AC power port of the EUT:

•

a) 100 % reduction in supply voltage for 100ms :Comply criterion A
b) 30 % reduction in supply voltage for 300ms :Comply criterion A

Table 9.6-1 Test equipment used for Voltage Dips and Interruptions

EQUIPMENT	SERIAL NO/ REFERENCE NUMBER	
Pacific AC Power source Model 140-AMX	0362	
TESEQ NSG 3040	Ser No: 1856	

9.6.2 Results

 The EUT was unaffected by the voltage dips and interruptions and continued normal operation during and after application therof.

9.6.3 Conclusion

The EUT complies with criterion A of the relevant sections of SANS / IEC 61000-4-11

9.7 VOLTAGE FLUCTUATIONS & FLICKERS

9.7.1 Setup

 The EUT was switched on and operated in accordance with the manufacturer instructions. The d_{max} value recorded was 0.1%

9.7.2 Conclusion

The EUT complies with the voltage fluctuations and flicker requirements of SANS / IEC 61000-3-3.

10. COMPLIANCE STATEMENT

The EUT complies with the requirements of the specifications listed in 11 below.

11. CONCLUSION

The The FPC-C40 ProtoCarrier / FPC-N40 ProtoNode devices (In the configuration tested) meet the requirements of the following specifications called for in BS EN 50090-2-2:

TEST REPORT

- BS EN 50090-2-2: (1996) +A2: 2007: Home and building electronic systems (HBES) System overview General technical requirements.
- SANS 222 (2009) / CISPR 22 (2008): 'Information technology equipment Radio disturbance characteristics - Limits and methods of measurement'
 - SANS 61000-4-2 (2009) / IEC 61000-4-2 (2008): Testing and measurement techniques Electrostatic discharge immunity test
 - SANS 61000-4-3 (2008) / IEC 61000-4-3 (2010): Testing and measurement techniques Radiated, radio-frequency, electromagnetic field immunity test
 - SANS 61000-4-4 (2011) / IEC 61000-4-4 (2011): Testing and measurement techniques Electrical Fast Transient / Burst
 - SANS 61000-4-5 (2006) / IEC 61000-4-5 (2005): Testing and measurement techniques Surge immunity test
 - SANS 61000-4-6 (2009) / IEC 61000-4-6 (2008): Testing and measurement techniques Immunity to conducted disturbances, induced by radio-frequency fields
 - SANS 61000-4-11 (2005) / IEC 61000-4-11(2004): Testing and measurement techniques Voltage Dips, Short Interruptions and voltage variations immunity test.
 - SANS 61000-3-3 (2009) / IEC 61000-3-3 (2008) : Limits Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems – Equipment with rated current ≤16 A per phase